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Abstract — To comply with the international planetary protection 
(PP) policy set forth by the Committee on Space Research 
(COSPAR) and National Aeronautics and Space Administration 
(NASA) Agency level requirements, spacecraft destined to 
biologically sensitive planetary bodies should “conduct 
exploration of them so as to avoid their harmful contamination”. 
Analysis, testing, and inspection are the standard forward 
verification activities used to demonstrate compliance with 
biological contamination requirements. For testing of spacecraft 
surface areas, a swab or wipe sample is collected from surfaces 
prior to last access and subsequently processed in the lab using 
NASA-approved PP methods for culture-based assays. Raw data 
resulting from this assay is then statistically treated employing a 
mathematical paradigm stemming from the Mariner Mars 1971 
Project to generate the bioburden density and total microbial 
bioburden present. This standard approach arbitrarily accounts 
for error and provides an upper conservative bound as it reports 
the maximum number of spores estimated to be present on flight 
hardware surfaces. A bioburden density estimates factors in the 
following variables: (1) observed bioburden count; 
(2) representative volume processed; (3) sampling device 
efficiencies; and (4) sampled surface area. Notably, to account for 
potential errors in the approach, a 0 observed count is changed to 
a NASA policy derived count of 1. 

 
The data generated by spacecraft bioburden verification 
campaigns in the past have resulted in >80% of wipes and >90% 
of swabs containing a bioburden count of 0. As such, having a 
robust and well documented statistical approach for dealing with 
the probability of low incident rates is necessary to be able to 
estimate spacecraft bioburden. Being able to statistically describe 
the bioburden distribution and associated confidence level is a 
game-changer for the development of bioburden allocations 
during mission design and will allow for tighter management of 
risk throughout spacecraft build. Thus, employing an empirical 
Bayes (EB) statistical approach was evaluated to estimate the 
microbial bioburden on spacecraft to mitigate the aforementioned 
mathematical concerns and provide a probabilistic bioburden 
distribution of flight hardware surfaces. 
 
For application of this approach to performing bioburden 
calculations, a range of non-informative prior assumptions on 
hardware surfaces are explored for Bayesian analyses while 
informative priors using posterior distributions from prior assays 
are utilized for EB analyses. Several non-informative priors are 
currently under investigation to assess fitness, including the use 
of a non-informative prior distribution bounded by the currently 
utilized NASA specification values for a basis of risk to account 
for unknowns during the spacecraft integration and test process. 
Informative priors under consideration are generated using 

sampled bioburden values from hardware originating within like 
processing environments (e.g., vendor cleaning process or similar 
assembly process), temporal spacecraft status events as a 
prediction for hardware cleanliness of future samples, and 
heritage system bioburden actuals to predict allocation for 
subsequent missions. Informative priors and probabilistic 
bioburden distributions are then validated using data sets from the 
Mars Exploration Rover, Mars Science Laboratory, and InSight 
missions. Using the EB approach to generate a probabilistic 
bioburden distribution as demonstrated through mission use cases 
provides a valid approach for use in the end-to-end requirements 
verification process. 
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1. INTRODUCTION 
Planetary protection (PP) is a discipline that focuses on 
minimizing the biological contamination of spacecraft to 
ensure compliance with international policy. The National 
Aeronautics and Space Administration (NASA) has 
developed a set of requirements (NPR 8020.12) based on 
recommendations from the Committee on Space Research 
(COSPAR) that each mission must comply with regarding 
both forward and backward PP. Forward PP addresses the 
risk that an outbound spacecraft may carry Earth-based 
material (both organisms and biogenic compounds) and 
result in a contamination event on a celestial body. Backward 
PP focuses on preventing potential adverse effects to Earth’s 
biosphere from returning unsterilized extraterrestrial 
particles. Forward PP requirements increase in stringency for 
spacecraft destined to a solar system body that is of 
astrobiological interest for life detection studies (either extant 
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or extinct) and/or the spacecraft’s potential to introduce 
terrestrial life to a celestial body. 

Biological cleanliness requirements to target bodies, such as 
Mars, include spacecraft assembly control and direct testing 
of the microbial bioburden to maintain spore requirements of 
5´105 spores at launch with an average of 300 spores/m2 
bioburden density on flight hardware surfaces, while 
preventing recontamination by utilizing International 
Organization for Standardization (ISO) 8 or better cleanroom 
environments. Direct flight hardware testing is conducted 
using the NASA standard spore assay (NASA HBK 6022). 
Briefly, swabs or wipes are used to recover biologicals 
present on a given hardware component; samples are then 
taken back to the microbiology lab where the biologicals are 
removed from the sampling matrices using sonication and 
suspended in a buffered solution; and then the samples are 
heat shocked at 80°C +/-2°C for 15 minutes to select for 
spores, and subsequently grown in oligotrophic, aerobic 
conditions for 72 hours to assess the presence of colony 
forming units (CFU). These raw CFU counts are 
mathematically treated to generate a bioburden density and 
subsequently assigned to their respective hardware 
components outlined in the PP Equipment List (PPEL) of the 
project. Then, respective surface areas and volumes of each 
hardware component are taken into account to perform 
roll-up calculations based on the hardware hierarchy to 
generate a final spacecraft level bioburden estimate. 

For Mars-bound spacecraft, a statistical paradigm stemming 
from the Mariner Mars 1971 mission was implemented to 
calculate a bioburden density from raw CFU counts. The 
1971 mission used raw CFU counts from microbial 
verification assays that were mathematically processed using 
a sum-of-the-means approach in the following manner with 
the variables defined in Table 1. The approach for estimation 
of microbial bioburden on spacecraft was reported for 
mission use and not referenced or further detailed as to why 
this approach was selected. 

Table 1. Definition of Variables Used in Bioburden 
Calculations 

Variable Definition 
A0 
ns, nw 
ntot 
asi, awj 
fs, fw 
es, ew 
AS 
Nsi 
Nwj 
Ntot 
B 

the total area represented by a group or sample set, m2 
the total number of swabs or wipes 
the total number of samples 
is the area sampled by the ith swab and the jth wipe, (m2)  
the pour fractions for swabs and wipes 
the recovery efficiencies for swabs and wipes 
the total effective area, (m2)  
the number of CFU counted in the ith swab sample 
the number of CFU counted in the jth wipe sample 
the total number of CFU in a group 
the bioburden density is the total number of spores divided 
by the total effective area sampled, Ntot/As , (spores/m2)  

 
The total effective area sampled was represented by: 

 𝑨𝒔 = ∑ 𝒂𝒔𝒊𝒇𝒔𝒊𝒆𝒔𝒊
𝒏𝒔
𝒊$𝟏  (1) 

The total number of spores counted was: 

 𝑵𝒕𝒐𝒕 = ∑ 𝑵𝒔𝒊
𝒏𝒔
𝒊$𝟏  (2) 

The bioburden density, B, was given by: 

 B = Ntot / As (3) 

The estimate of the total bioburden, N, was given by: 

 N = B A0 (4) 

The swab efficiency corrective factor utilized for the Mariner 
Mars 1971 project was intended to account for the efficiency 
of the sampling device to both collect biologicals from the 
sample surface and subsequently release the biologicals from 
the sample device for analysis. The experimental factor was 
derived from an internal report by Angelotti et al. (1964) 
entitled, “Comparative evaluation of the cotton swab and 
Rodac methods for the recovery of Bacillus subtilis spore 
contamination from stainless steel surfaces” [1], which 
observed an efficiency of ~47%. Although there was an 
experimentally derived value of 47%, a value of 30% was 
used for the mission as a “conservative factor,” as was noted 
in the mission’s June 29, 1970, Microbiological Assay and 
Monitoring Plan. No further rationale was noted as to why 
this conservative value was utilized. 

For the Viking missions launched in 1975, a robotic 
spacecraft bioburden prediction model was developed and 
implemented into a management tool to simulate microbial 
contamination during spacecraft assembly and minimize the 
number of samples collected in order to predict the bioburden 
distribution prior to microbial reduction and launch [2]. 
These predictions were utilized during the spacecraft build to 
ultimately reduce the number of direct verification assays and 
engineering controls on the two spacecraft to a combined 
total of 4,899 swabs during the final eight months of 
integration and tests [3]. Notably, for the Viking missions 
there were only eight geographically distinct spacecraft 
groupings representing several hardware components derived 
from the thermal heating analysis performed for the terminal 
dry heat microbial reduction. The Viking missions swab 
collection and processing efficiency corrective factor that 
was utilized, as agreed upon by both NASA headquarters 
(HQ) and the mission, was 50%. No further explanation was 
documented in the Viking 1975 Project bioburden model 
report as to the selection of a 50% efficiency. This efficiency 
value was only 3% above the study-reported value of 47%. 
The Mars Pathfinder Mission (MPF), which launched in 1996 
and was the next NASA mission to land a spacecraft on the 
surface of Mars, adapted the Viking sum-of-the-means 
approach, but did not account for the sampling device 
efficiency and instead applied Poisson and Gaussian statistics 
utilizing a 3-sigma limit (3s) to report a maximum predicted 
bioburden (Bmax), as discussed in the Mars Pathfinder PP 
Plan [4]. 

The total effective area sampled was represented by: 

 𝑨𝒔 = ∑ 𝒂𝒔𝒊𝒇𝒔𝒊
𝒏𝒔
𝒊$𝟏 +∑ 𝒂𝒘𝒋𝒇𝒘𝒋

𝒏𝒘
𝒋$𝟏  (5) 

The total number of spores counted was: 
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 𝑵𝒕𝒐𝒕 = ∑ 𝑵𝒔𝒊
𝒏𝒔
𝒊$𝟏 +∑ 𝑵𝒘𝒋

𝒏𝒘
𝒋$𝟏  (6) 

The bioburden density, B, was given by: 

 B = Ntot / As (7) 

The estimate of the bioburden maximum, Bmax, was based on: 
(1) Poisson statistics for strictly swab samples Ntot<1; 
(2) Gaussian statistics for strictly wipe samples Ntot<1; and 
(3) Gaussian statistics for a combination of wipe and swab 
samples Ntot>1, while factoring in the sum of the mean. The 
Mars Pathfinder mission was the first to document that the 
probability per sample of a positive count is small over many 
samples for a given A0; thus, a Poisson statistical approach 
would be valid for swab samples. The standard deviation for 
a group of swabs with a sampled area of A0 was calculated 
by the mean of its square root as follows: 

 𝛔 = 	𝟏 ÷ Ö(𝐀𝟎𝐀𝒔) (8) 

Despite the mean bioburden being zero for the swab group a 
NASA policy directive was employed to change the count to 
1 spore and subsequently calculate the Bmax, which is given 
by  

 𝑩𝒎𝒂𝒙 = 𝟏/𝑨𝒔 	+ 𝟑𝝈 (9) 

Conversely, for groups of wipes where the raw bioburden 
CFU was Ntot>1, Gaussian statistics were used because less 
wipes would be collected over a given A0, which resulted in 
a standard deviation for a group of wipes being calculated as: 

 𝛔 = 	𝟏 ÷ 𝐀𝒔 (10) 

For groups of wipes where Ntot<1, a NASA policy directive 
was employed to change the count of 1 spore to calculate the 
Bmax, given by  

 𝑩𝒎𝒂𝒙 = 𝟏/𝑨𝒔 	+ 𝟑𝝈 (11) 

When Ntot>1 for a combination of wipes and swabs, the sigma 
is calculated with the actual number of CFUs as follows: 

 𝛔 = 	Ö(𝐍/𝐀𝒔) (12) 

For groups of wipes and swabs where Ntot>1, the formal mean 
is used to calculate the Bmax, which is given by: 

 𝑩𝒎𝒂𝒙 = 𝑵/𝑨𝒔 	+ 𝟑𝝈 (13) 

The Mars Exploration Rover (MER) mission baselined their 
bioburden calculation approach in a similar fashion to the 
MPF by using three different statistical treatments dependent 
upon sample type and observed CFU in the laboratory. The 
Mars Science Laboratory (MSL) further expanded the 
bioburden statistical approach to treat wipes following a 
Poisson distribution, due to the larger surface area of the 
spacecraft as compared to MPF or MER [5]. 

The MSL mission had to take a pragmatic approach to the 
previously applied Gaussian approach from MER for the 
wipe samples because the accountable surface area for the 

MSL mission was 25% more than for MER, therefore 
requiring more wipe samples. The raw bioburden statistical 
treatment scenarios for MSL included: (1) a general case for 
wipes and swabs where Ntot>1; (2) a swab only case where 
Ntot<1; (3) wipes and swabs where Ntot<1; and (4) one swab 
or wipe sample where Ntot>1, which is further detailed in [6], 
using over 29 equations to calculate the total bioburden for 
the mission. In general, raw CFU counts were treated 
utilizing Poisson statistics for a collection of samples where 
Ntot<1, or if there was only one sample in a hardware group. 
All others employed Gaussian ones. In addition to expanding 
the statistical treatments, MSL also significantly changed the 
calculations by employing a weighted average approach 
based on the surface area, where the standard deviations of 
each sample were weighted by the corresponding surface area 
sampled prior to averaging. This resulted in a preferential 
weighting to raw CFU counts generated from wipe samples 
due to the larger surface area sampled, thereby lowering the 
overall standard deviations of the reported bioburden 
densities. Unlike MER, the MSL statistical approach used the 
actual spore count in this case to determine the bioburden 
density as opposed to adding a NASA policy derived count 
of 1 to a group where no spores were observed. 

Towards the end of the MSL mission, the European Space 
Agency and the NASA Planetary Protection Office 
coordinated efforts to standardize the raw bioburden 
calculation approach. This resulted in future missions, such 
as InSight and Mars 2020, to revert back to the Viking 
sum-of-the-means approach using equations 1-4 [7, 8]. In 
addition to standardizing this approach, swab and wipe 
recovery efficiencies (es, ew), as shown in Table 2, were 
adopted, as well as reinforcing the assignment of a NASA 
policy derived count of 1 CFU where the true CFU count was 
zero observed spores. For the InSight mission, a series of 
weighted averages were used to calculate the bioburden. Data 
from each unique sampling date was treated independently, 
even though it originated from sampling the same hardware 
component resulting in multiple groupings for a single 
hardware component. A post-mission analysis of the impact 
of artificially converting a 0 CFU observed value to 1 CFU 
resulted in 127 hardware groups being manipulated, which 
yielded an increase of 1.7% in the total bioburden. 

Table 2. Swab and Wipe Combined Sample Collection 
and Processing Efficiency Values 

Sampling 
Device 

Processing 
Method 

% 
Efficiency Traceability 

Puritan Cotton Swab 
806-WC 
COPAN Polyester 
Swab, PE ATP  
COPAN Flocked 
Nylon, FLOQSwab 
522C 
COPAN Flocked 
Nylon, FLOQSwab 
522C 
TexWipe 3211 

NASA 
 
European Space 
Agency (ESA) 
NASA 
 
ESA 
 
 
NASA 

31.7 
 
11.1 
 
13.2 
 
49 
 
 
30 

ESA/NASA Study1 
 
ESA/NASA Study 

 
ESA/NASA Study 
 
ESA/NASA Study 
 
 
NASA HQ Value 

1 Validation of swab assay method report. ESA Study Report. June, 27, 2013. 
TEC-QI/13-50. C. Moissl-Eichinger. 
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The final bioburden density values for each component are 
then imported into the mission’s PPEL as a means to keep 
track of the bioburden requirements compliance. These 
densities and corresponding total bioburdens from the 
hardware groups are then cumulatively added into various 
bins, such as landed hardware, impacting hardware, 
subsystem hardware, bioregions (i.e., hardware groupings 
that are exposed to a particular space environment condition 
such as UV or radiation), or the entire spacecraft. These roll 
up calculations are performed in the PPEL using a series of 
lookup equations. Ultimately, the total bioburden of the 
spacecraft is then reported out and compared to the ‘at-
launch’ bioburden requirements for compliance or utilized as 
an input parameter into the inadvertent biological 
probabilistic risk assessment (PRA). 

The PRA is a mature and influential technology that relies on 
two core methodologies—fault/event trees and statistical 
parameter estimation. The contamination probability event 
trees analysis utilizes Boolean logic to combine different 
paths to a contamination event. Once such paths are 
exhaustively enumerated, the elementary probability rules 
are applied to aggregate the probabilities of different 
contamination scenarios into a contamination event [9]. The 
performance of PP PRA depends critically on the accuracy of 
parameter estimates for the individual components, as they 
are merged through event trees analysis to produce the overall 
probability of a serious contamination event. As an input 
parameter, bio-contamination is the initial bioburden at 
launch, which accounts for the number of microorganisms 
present on the spacecraft [9]. Historically, two 
complimentary approaches are used in PRA to estimate 
bioburden densities for individual components—frequentist 
and Bayesian. We consider the two approaches 
complimentary because the Bayesian approach complements 
the frequentists’ likelihood function with prior information in 
the form of a previous distribution against the parameter of 
interest. This paper compares and contrasts these two 
approaches used for bioburden calculations and evaluates 
their performance using data collected from the InSight 
mission. 

While these numerical approaches to bioburden calculations 
have been widely accepted and used for bioburden validation 
on past missions, the increased complexity and sensitivity of 
missions that are in development and the need to 
mathematically evaluate and document the approach are 
critical for future mission success. Such bioburden density 
models, as opposed to the previously utilized bioburden 
maximum, will allow for mission planning and PP trades to 
be conducted during the design stages of a mission. 
Particularly in developing a sampling plan, associated 
spacecraft surface area coverage, the implementation of 
appropriate cleanroom class protocols (i.e., stringency of 
gowning and cleanroom protocols), and microbial reduction 
planning. These models will also aid the mission throughout 
the build and testing phase, as they will allow for tighter 
monitoring and prediction of bioburden throughout the 
course of a mission. In addition, they can assist NASA HQ in 
their verification oversight activities and mission certification 

of flight readiness. For missions requiring a PRA, like those 
proposing to return samples or those destined for outer 
planets, the application of this type of model and associated 
mission dataset will be critical in evaluating the distribution 
of the microbial bioburden present on spacecraft hardware 
and associated confidence intervals. The distribution and 
confidence level reporting being proposed provides a critical 
next step in spacecraft contamination monitoring as it 
provides a robust mathematical framework that can be used 
to technically describe the biological contamination from 
bounding cases to probable cases to help bridge the science 
and policy gap. 

2. EMPIRICAL BAYES BIOBURDEN DATA 
COLLECTION AND PROCESSING 

The InSight mission PP verification dataset was used to 
develop an empirical Bayes (EB) bioburden estimation 
model. This dataset from 2013−2018 contained raw CFU 
counts from spacecraft status checks, hardware receiving 
inspection, hardware closeouts, spacecraft stack, and NASA 
verification assays of 2,031 swabs and 1,266 wipes. In 
general, this dataset had a low incidence of CFU’s as 93% of 
the swabs and 63% of the wipes had a final CFU count of 0 
at 72 hours, thereby resulting in ~85% of the 39,379 petri 
dishes yielding 0 CFU. Therefore, for the purposes of model 
development and the application of EB, a portion of the total 
InSight dataset was used containing strictly sampled test data 
as opposed to those components accounted for using 
specification values or a combination of test data and 
specification values. For the application of EB, test data from 
several components were used to generate informative priors, 
which were then applied to estimating the bioburden density 
of another component, thus demonstrating various 
engineering use cases for such a model. 

The data for each individual spacecraft component were 
collected using either swabs or wipes. For each component, a 
number of samples were collected on a given date or on 
different dates. A swab data collection covered the area of 
0.0025 m2 with a single swab, while a wipe-covered area 
varied typically between 0.1 and 1.0 m2, depending on the 
geometric complexity and size of the sampled component. 
Each swab or wipe was considered a sample. Having been 
processed in the microbiology laboratory, the samples were 
deposited onto petri dishes containing tryptic soy agar. For 
swabs, only 80% of aliquots were deposited in the dishes, 
thus producing a pour fraction of 0.8, which was taken into 
consideration by reducing the sampled area. For wipes, the 
pour fraction was 0.25. In this paper, the sampling efficiency 
of wipes or swabs have not been taken into account, as it is 
not a directly observable quantity and must be experimentally 
estimated. The number of samples was different for each 
component and each of them could have been sampled either 
with swabs, wipes, or both. For the purpose of Bayesian 
analysis, the raw data for each component was represented by 
pairs (xi, ei ), i=1,2...N, where xi is the number of CFU counts 
for ith sample (swab or wipe) and ei is the exposure calculated 
as the area covered with a swab or wipe multiplied by the 
corresponding pour ratio, and N is the number of samples 
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collected for a component. Data for each component were 
pooled to produce a total count and total exposure as X=∑ 𝑥./

0  
and E=∑ 𝑒./

0 . The total count and total exposure have been 
used in Poisson likelihood for Bayesian inference. 

 

Sampled data from eight different InSight components were 
used in this paper. The components were selected to represent 
a wide range of raw CFU counts, sampled surface areas, 
exposures, and total surface areas. Exposure is utilized 
interchangeably with the term effective area throughout this 
paper. Table 3 summarizes the data used in this paper. 

Table 3. Summary of Bioburden Data for Eight InSight Components 

Component CFU count Area sampled, m2 Exposure: area sampled 
´ pour ratio, m2 

Total surface area of 
the component, m2 

% sampled=area 
sampled/total area 

      

9 0 0.6031 0.2167 0.7580 79.5650 
73 0 2.4200 0.6160 2.7400 88.3212 
300 1 2.6600 0.6705 5.0000 53.2000 
169 1 0.2400 0.1920 0.5850 41.0260 
283 5 4.5710 1.1427 12.0000 38.0920 
243 5 0.2800 0.1140 0.2980 93.9600 
38 12 3.1050 0.8065 10.0000 31.0500 
261 52 0.0600 0.0480 0.3120 19.2310 

 
3 CONSTRAINED NON-INFORMATIVE PRIORS: 

UTILIZATION IN PP PLANNING AND 
IMPLEMENTATION 

Priors are envisioned to inform the lifecycle of a flight project 
to include the planning, design, implementation, and 
monitoring of the spacecraft throughout the assembly, test, 
and launch operations phase. During the mission planning 
and design phases, empirical data from previous missions and 
hardware sets can be used to inform engineering judgement 
to develop the expected flow down of a mission’s allotted 
bioburden. Beneficial use cases where an informative prior 
(generated from previous mission datasets) could be utilized 
to inform the current state-of-the-state of an active mission 
include a like-processing environment where the same 
cleanroom or cleaning process is employed allowing for the 
application of a unique informative prior for the respective 
vendor/hardware component, a particular microbial reduction 
process, or perhaps an entire heritage system (e.g., Phoenix 
prior being utilized for InSight). During the active build and 
test operations phase of the mission, informative priors 
generated from hardware receiving inspection or spacecraft 
health check assays can be applied to final assays to refine 
the current best estimates. In addition, the current relevant 
mission dataset can be used to generate informative priors to 
predict audit assays prior to launch, biological cleanliness 
before and after critical operations (e.g., spacecraft move, 
environmental test), and forecast bioburden prior to delivery 
of a given hardware component from a vendor’s bioburden-
controlled environment. 

While the major appealing property of Bayesian inference is 
its ability to include prior information into the inference 
model, sometimes it is required to avoid reliance on old 
information as it may dominate the newly collected data, 
especially if the new data are sparse. With the development 
of missions to outer planets and the proposed Mars sample 
return campaign, a need exists to perform PP assessments on 
previously un-encountered spacecraft components and novel 
instruments. Implementing informative priors on these new 

mission architectures based on data from previous missions 
that may have different architectures, including new vendors 
or commercial entities—and thus a different expected 
bioburden—can inappropriately influence bioburden 
estimations. Another reason to do away with informative 
priors is the lack of reliable prior information about the 
parameter of interest. Finally, informative priors may be 
considered “subjective” by peers; as such, using 
noninformative priors may help to alleviate this concern. On 
the other hand, noninformative priors quite often could be 
improper leading to undefined moments or noninvariant 
situations under re-parameterization. Since the posterior 
mean is pulled toward the prior mean and the reciprocal of 
prior variance is the regularization parameter, 
noninformative priors can be quite defective. 

This motivated the development of a constrained 
noninformative (CNI) prior [10], which while retaining 
desirable properties of a noninformative distribution, also 
allows specifying the expected value of the parameter of 
interest. The CNI uses a definition of entropy suggested in 
[11], which is the negative of the Kullback–Leibler 
divergence [12] with a reference distribution π(θ) being 
Jeffreys prior: 

 𝐻 = −∫𝑝(𝜃)log	(1(3)5(3)
) 𝑑𝜃 (14) 

In addition to the re-parametrization property, the CNI also 
has a larger variance than other noninformative priors, such 
as the maximum entropy prior [11]. This larger variance 
impacts the prior by diminishing its influence and gives more 
weight to the data. The variance of the prior distribution plays 
a prominent role in Bayesian inference as it defines how 
strongly the posterior mean is “pulled” towards the prior 
mean. The CNI can be parametrized as Gamma (1/2,1/(2∙μ)), 
where μ is the pre-defined expected value. The mean of the 
posterior distribution has been reported as summary statistics 
for posterior inference. The 90% credible intervals were used 
to quantify uncertainty in posterior inference. For this paper, 
μ=300 CFUs/m2 reflects the average bioburden density 
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requirement provided by NASA for Mars-bound Planetary 
Protection Category IVa bioburden sensitive missions. 

The dependence of Bayesian inference on prior selection has 
always been a sticking point between frequentist and 
Bayesian schools of statistical thought. From the frequentist 
point of view, Bayesian analysis is biased unless it deploys a 
“correct” prior; hence, it is vulnerable to biased results. On 
the other hand, it has been known since the 1960s [12] that 
EB can achieve smaller total squared error risk than a 
maximum likelihood estimator (MLE). This superior 
performance justified the efforts for Bayesian prior selection 
and resulted in numerous publications in this field 
[13, 14, 15, 16, 17, 18]. The EB techniques are broadly 
categorized [18] as parametric EB techniques and 
nonparametric EB techniques. Due to the physical constraints 
when estimating the bioburden of spacecraft components, 
including the limitation of the sampleable surface area and 
the scarcity of positive CFU counts as the usage of EB 
techniques—particularly the application of informative 
priors—allows PP engineers to gain increased confidence in 
the estimation of the true bioburden by pooling more data 
than could be obtained strictly from the surface of interest and 
applying it to estimate the true bioburden of various 
spacecraft surfaces. 

4. GAMMA-POISSON COMPOUND DISTRIBUTION 
MODEL 

The core of Bayesian inference is the Bayes formula, which 
inverts information contained in a data set into the estimation 
of a parameter: 

  (15) 

where p(λ/x,a) is the posterior distribution of the parameter 
conditioned on a current data set x and hyperparameter a, 
which defines the prior distribution of p(λ/a). L(x/λ) is a 
likelihood function that specifies the probability for the given 
data set x to occur conditioned on the parameter. 

Bayesian predictions can be based on both the posterior and 
prior distributions of the parameter. Instrumental to 
performing Bayesian prediction is the likelihood of a future 
data set z, which is defined as L(z/λ). This likelihood assesses 
the plausibility for data z to occur in future hypothetical 
experiments given a value of the parameter λ. Combining this 
likelihood with a prior distribution on the parameter, we get 
what is called a prior predictive distribution: 

  (16) 

Prior predictive distribution is an example of a compound 
distribution model defined as the data distribution 
marginalized over parameters of the mixing distribution. The 
compound distribution model, referenced in Eq. 16 has been 
the backbone of empirical Bayesian methods for decades. 

The integral in Ref. 16 appears in the denominator of the 
Bayes theorem and is known under multiple names such as 
evidence, marginal data distribution, and prior predictive 
distribution. The compound distribution model is usually 
used in EB methods to obtain an estimate of the 
hyperparameter α-α ̂, which can be used in Eq. 15 in lieu of 
the true value of α to specify the prior in Bayesian inference: 

  (17) 

In this paper, a Gamma-Poisson compound distribution 
model is used: 
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where NB is a negative binomial distribution with parameters 
α and p, the prior is a Gamma distribution with parameters α 
and β, x-CFU is the count, e is the exposure, and the 
likelihood is Poisson. Since the compound distribution for the 
Gamma-Poisson is NB, its empirical moments can be equated 
with theoretical ones and the values of hyperparameters α and 
β can be estimated to be used in Bayesian inference [19]. This 
technique is called the method of moments (MOM) and was 
used in this paper for EB. A schematic representation of the 
Gamma-Poisson model and its application in PP PRA is 
illustrated in Figure 1, where the unknown prior distribution 
is assumed to be Gamma, which yields an unobservable 
realization of parameters 𝜆1, 𝜆2,…, 𝜆k, each representing 
component-specific bioburden density. Here the subscript k 
is the number of sampled components. Further, each 𝜆i, 
i={1,2,…,K} produces an observable number of CFU xi for a 
given exposure ei, according to a known probability 
distribution, in this case Poisson, xi~Poisson (ei,λi). We are 
interested in recovering the prior density Gamma 
parametrically having only the sample of observed NB 
variates x1, x2,…, xM and known exposures e1, e2,..., ek. In 
summary, by using the EB approach we are going backward 
from observed empirical data to a plausible prior distribution, 
which is subsequently used in Bayesian inference. The 
parameters of the two prior distributions used in this paper 
are summarized in Table 4. 

Table 4. Parameters of Gamma distribution for two priors 

Prior distribution α- shape β - rate Mean  Variance 
     

CNI 0.5 0.0017 300 1.8e+05 
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MOM 0.1657 0.0011 144.1434 1.2539e+05 
 
While the rate parameters are almost identical for two 
distributions, the shape parameters are different, which 
affects the MOM of the prior distributions. For example, the 
mean value for MOM is more than twice smaller, while the 
variance is about 30% smaller. The smaller variance of the 
prior distribution obtained with MOM will cause posterior 
inference to rely more on prior information. The means of the 
posterior and predictive distributions have been used as 
posterior summary statistics. The 90% credible intervals were 
used to quantify uncertainty in posterior inference. For this 
paper, μ=300 CFUs/m2 to reflect the bioburden density 
requirement provided by NASA (NPR 8020.12). Credible 
intervals were calculated as an inverse of Gamma distribution 
and NB distribution function [15]. Bayesian model selection 
has been performed using the Bayes factor (BF) approach, 
which relies on the comparison of posterior odds for different 
models, thereby selecting a model that is most supported by 

the observed data. If there are two competing models 
represented by two different prior distributions parameterized 
as Gamma (α1, β1) and Gamma (α2, β2) then for each model, 
the marginal data likelihood is calculated as: 

 𝑃(𝑋/𝛼! , 𝛽!) = * (#∙%)!
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𝑑𝜆, 𝑖 = 1,2 (19) 

The BF is then calculated as: 

 𝐹 = 𝑃!𝑋/𝛼1,𝛽1"
𝑃!𝑋/𝛼2,𝛽2"

	 (20) 

which is the ratio of the total probability of observed data to 
occur under the two different models. 

 
Figure 1. Gamma-Poisson Bioburden Compound Distribution Model 
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5. RESULTS AND DISCUSSION 
The analysis of Tables 5-12 reveals that on the average, 
MOM produces lower values of estimated bioburden density 
and total CFU counts. For example, for component 9, the 
MOM posterior mean is 3 times lower than for CNI, while 
the predictive mean is more than 3 times smaller. Also, MOM 
produces tighter credible intervals than CNI. These 
observations can be explained by a lower mean value of prior 
distribution for MOM than for CNI and also smaller MOM 
variance. The difference between the two prior distributions 
is especially pronounced for the components with small 
counts of CFU. As the number of counts grows, the 
difference between the two prior distributions diminishes as 
the likelihood starts to dominate. The uncertainty in posterior 
inference is lower if a larger area is sampled, as evidenced 
from components 283 and 243, for example. The posterior 
credible intervals are tighter for 283 than for 243. However, 
for predictive inference, the situation is reversed as a higher 
percentage of component 243 was sampled; hence, we can 
become more confident in forecasting the total bioburden. 
For the large number of counts, the results of applying both 
priors are nearly identical, indicating that in this case the data 
overcome prior assumptions and dominates the inference. 
The mean values of predictive distribution are correlated with 
the total CFU count found on the component. 

It is also instructive to compare components 73 and 300, 
which have nearly identical sampled areas, but the CFU 
counts differ only by one. As expected, since component 300 
has a higher CFU count, its posterior mean values are higher 
for both priors, while its posterior credible intervals are 
wider, reflecting higher variability in the data. Component 
300 has much wider predictive credible intervals as a lower 
percentage of its total area has been sampled. In general, the 
uncertainty in the posterior estimate of the bioburden density 
depends on the number of counts and sampled area, while the 
uncertainty in the predictive inference depends on sampling 
percentage. If the number of counts is the same, the 
component with a larger sampling area will have a smaller 
bioburden uncertainty, while the component with a larger 
sampling percentage will have a smaller predictive 
uncertainty. This observation can be used for cost-benefit 
optimization during mission planning to optimize the number 
of samples required and help minimize the number of 
cleaning and resampling sessions. 

Components 38 and 261 with the largest number of counts 
(12 and 52) produced results with the largest uncertainty for 
both posterior and predictive inference. This reflects the large 
variability in sampling data for those components. This 
observation suggests that components with a larger number 
of counts will benefit in terms of estimation accuracy from 
applying more restrictive informative priors to increase the 
effect of regularization. 

For comparison, Table 13 shows bioburden density values 
obtained using NASA’s legacy and current approach. The 
legacy 3-σ approach is a purely frequentist approach based 
on the assumption of Gaussian statistics for CFU distribution 
and estimation of the mean value of this distribution and its 
standard deviation, σ [6]. Having estimated the mean value, 
the 3σ is added to it for conservatism. As can be seen from 
Table 13, this approach systematically produced bioburden 
values higher than the Bayesian approach with CNI prior. On 
the other hand, the current weighted average approach 
employs an ad-hoc Bayesian procedure equivalent to using a 
uniform prior. In contrast to the uniform prior approach used 
in this paper, the weighted average approach uses one more 
parameter in the calculation of the effective area sampled-
sampling efficiency. Since sampling efficiency is not a 
directly observable value, it is an estimate, so it had been 
chosen not to use it in the Bayesian approach as described in 
this paper. While the 3-σ approach envisages the calculation 
of confidence intervals and the weighted average does not, 
neither technique actually currently reports them for 
requirements compliance. In comparison to Bayesian 
analysis, both techniques generally produce higher values of 
bioburden density, thus ultimately producing a higher 
probability of planetary contamination when used in 
probabilistic risk assessment models. 

Table 14 shows BF for comparison of CNI and MOM. In this 
study, MOM was used as a null hypothesis when compared 
to CNI. It can be seen that for components with zero CFU 
counts, there is some evidence in favor of MOM; however, 
as the number of counts increases, the difference between the 
two models diminishes. This once again emphasizes the 
reliance on the data rather than on the prior for the 
components with larger counts. 

Further model development should include the ability to 
utilize specification values (i.e., when hardware cannot be 
sampled) and direct hardware test data in a particular 
distribution. 

 
Table 5. Summary of posterior and predictive inference for component 9. 

Prior 
distribution 

Posterior mean. 
Bioburden density 

– λ, CFU/m2 

5th percentile of 
posterior 

distribution 

95th percentile 
of posterior 
distribution 

Predictive 
mean, CFU 

5th percentile of 
predictive 

distribution 

95th percentile of 
predictive 

distribution 
CNI 2.2889 0.0090 8.7928 1.7350 0 7 
MOM 0.7603 4.1117e-08 4.0993 0.5763 0 3 

 
Table 6. Summary of posterior and predictive inference for component 73. 

Prior 
distribution 

Posterior mean. 
Bioburden density 

5th percentile of 
posterior 

95th percentile 
of posterior 

Predictive 
mean, CFU 

5th percentile of 
predictive 

95th percentile of 
predictive 
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– λ, CFU/m2 distribution distribution distribution distribution 
CNI 0.8094 0.0031 3.1096 2.2180 0 9 
MOM 0.2684 1.4519e-08 1.4475 0.7356 0 4 

 
Table 7. Summary of posterior and predictive inference for component 300. 

Prior 
distribution 

Posterior mean. 
Bioburden density 

– λ, CFU/m2 

5th percentile of 
posterior 

distribution 

95th percentile 
of posterior 
distribution 

Predictive 
mean, CFU 

5th percentile of 
predictive 

distribution 

95th percentile of 
predictive 

distribution 
CNI 2.2315 0.2617 5.8130 11.1579 1 30 
MOM 1.7355 0.1267 4.9272 8.6778 0 26 

 
Table 8. Summary of posterior and predictive inference for component 169. 

Prior 
distribution 

Posterior mean. 
Bioburden density 

– λ, CFU/m2 

5th percentile of 
posterior 

distribution 

95th percentile 
of posterior 
distribution 

Predictive 
mean, CFU 

5th percentile of 
predictive 

distribution 

95th percentile of 
predictive 

distribution 
CNI 7.7452 0.9083 20.1757 4.5309 0 13 
MOM 6.0352 0.4408 17.1337 3.5305 0 11 

 
Table 9. Summary of posterior and predictive inference for component 283. 

Prior 
distribution 

Posterior mean. 
Bioburden density – 

λ, CFU/m2 

5th percentile 
of posterior 
distribution 

95th percentile 
of posterior 
distribution 

Predictive 
mean, 
CFU 

5th percentile of 
predictive 

distribution 

95th percentile of 
predictive 

distribution 
CNI 4.8059 1.9987 8.5961 57.6713 22 105 
MOM 4.5158 1.8133 8.2011 54.1903 20 100 

 
Table 10. Summary of posterior and predictive inference for component 243. 

Prior 
distribution 

Posterior mean. 
Bioburden density – 

λ, CFU/m2 

5th percentile 
of posterior 
distribution 

95th percentile 
of posterior 
distribution 

Predictive 
mean, CFU 

5th percentile of 
predictive 

distribution 

95th percentile of 
predictive 

distribution 
CNI 47.5504 19.7758 85.0510 14.1700 4 27 
MOM 44.8607 18.0138 81.4700 13.3685 4 26 

 
Table 11. Summary of posterior and predictive inference for component 38. 

Prior 
distribution 

Posterior mean. 
Bioburden density – 

λ, CFU/m2 

5th percentile 
of posterior 
distribution 

95th percentile 
of posterior 
distribution 

Predictive 
mean, CFU 

5th percentile of 
predictive 

distribution 

95th percentile of 
predictive 

distribution 
CNI 15.4671 9.0398 23.2949 154.6710 88 236 
MOM 15.0630 8.7294 22.7980 150.6308 85 231 

 
Table 12. Summary of posterior and predictive inference for component 261. 

Prior 
distribution 

Posterior mean. 
Bioburden density – 

λ, CFU/m2 

5th percentile 
of posterior 
distribution 

95th percentile 
of posterior 
distribution 

Predictive 
mean, CFU 

5th percentile of 
predictive 

distribution 

95th percentile of 
predictive 

distribution 
CNI 1057.0469 829.0645 1307.8988 329.7986 253 414 
MOM 1061.3672 831.7609 1314.0833 331.1465 254 416 

 
Table 13. Bioburden densities calculated using InSight-based weighted average and MSL-based 3-σ approaches for 
eight components. 

Component 9 73 300 169 283 243 38 261 
MSL-based 3 sigma Bioburden 

Density – λ, CFU/m2 
13.84 4.87 5.96 20.83 5.17 130.14 52.06 2349.53 

InSight-based weighted average. 
Bioburden density – λ, CFU/m2 

27.99 17.36 9.54 33.70 11.11 186.6959 9.66 658.47 
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Table 14. BF for different components using MOM as null hypothesis. 
Component 9 73 300 169 283 243 38 261 

BF 4.82 6.83 2.31 1.54 1.50 0.74 1.03 0.42 
 
 

6. SUMMARY 
The performance of parameter estimation methods for PRA 
applications and compliance with bioburden density values 
for forward PP is an important technical issue, as well as a 
regulatory issue. For the numerical estimates produced by 
bioburden calculations to be taken seriously, they should 
reflect the bioburden density values observed through test 
data and provide an estimate of uncertainty for these values. 
For forward PP, they are a direct reflection of the compliance 
to the bioburden requirements. Also, the multitude of 
parameter estimation methods used in PRA raises the 
question of the “best” or at least the most appropriate method 
for a given application. Bayesian inference is widely used in 
modern PRA applications with three major approaches to 
prior selection, which are all tightly intertwined with one 
another, including noninformative priors with subsequent 
updating, EB, and hierarchical Bayes. Each one of these 
approaches depends on prior selection and elicitation 
methods. In this paper, we retrospectively analyzed the 
performance of Bayesian inference with noninformative 
priors, EB inference, and two additional approaches that have 
been implemented by previous missions for PP bioburden 
estimations. Our results indicate that both Bayesian methods 
produced results comparable with NASA legacy 
mathematical approaches and currently utilized approaches.. 
This was likely due to the use of conservative factors, such as 
the replacement of zero CFU counts with a NASA policy 
derived CFU count of 1 and the application of sampling 
device and processing efficiencies. Between the Bayesian 
techniques, for components with lower CFU counts, the EB 
prior was favored over the noninformative prior; however, for 
larger CFU counts, the difference between the two priors is 
negligible. This demonstrates the importance of prior 
selection for components with low CFU counts, which 
normally dominate the collected data sets. Hence, for the 
majority of PP data with low CFU, EB is recommended as 
the approach that should be utilized. While both Bayesian 
approaches provide credible intervals for posterior and 
predictive inference, they do not account for uncertainty in 
the hyperparameters of Gamma distribution. This can be 
provided by hierarchical Bayes, which will be the subject of 
future work. 

In addition to hierarchical Bayes being the subject of future 
work, model validation will also be conducted. This may 
include InSight use cases in that a portion of the data from a 
given sample component used to generate the data-driven 
prior. Several InSight model validation scenarios could be 
envisioned to demonstrate the feasibility of the mathematical 
approach for the application of spacecraft bioburden 
predictions. Time-trending, similar cleanroom manufacturing 
environments, and similar microbial reduction processes 
were the datasets that could be used to cross-validate the 
models. For the time-trending datasets spacecraft health 

status data collected from 2013−2016 on the cruise stage 
solar arrays, the lander primary structure, and the lander 
multilayer insulation, as well as the instrument tether box 
groups, which were used from 2016−2018, and the associated 
raw CFU observed was compared to the model output. 
Another use case for PP engineering would be the prediction 
of like-hardware microbial processing so that an allocation 
could be established for a unique vendor or specific group. 
To validate the mathematical model for this engineering use 
case, a telecommunications system was selected from a 
particular vendor with the InSight values to cross-validate the 
next missions’ identical system and the lander honeycomb 
structure in that multiple panels were fabricated in the same 
facility and treated the same, but had different delivery dates. 
The prediction of microbial reduction processes on surfaces 
would be an essential use case as over 90% of the surfaces on 
a spacecraft undergo some form of microbial reduction 
processing. To predict the bioburden densities of 
subsequently processed microbially reduced hardware, 
precision cleaned propulsion lines and alcohol wipe cleaned 
electronics chassis could be chosen as test cases from the 
InSight mission. These model validation use cases will be 
considered as important use cases for future studies. 

Implementing a Bayesian statistical approach to perform 
bioburden density estimations will: (1) facilitate the 
application of historical datasets and engineering judgement 
in estimating the total bioburden and bioburden density; 
(2) assign appropriate confidence intervals and account for 
uncertainty using a methodological approach; and (3) allow 
for the prediction of bioburden throughout the lifecycle of a 
project. Given the increasing complexity and sensitivity of 
future NASA missions, such as those headed for outer planets 
and the proposed Mars sample return campaign, a 
mathematical technique that is documented and vetted by the 
associated stats and PP scientific communities will serve to 
allow requirements compliance and consistency in 
performing PP risk assessments. A Bayesian statistical 
approach will additionally allow for advanced planning of PP 
implementation approaches and cost/benefit analysis to be 
performed in order to optimize the number of samples taken 
throughout the lifecycle of the project. 
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